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Abstract. Mean field slave boson (MFSB) solution is found analytically for the Emery model of the high-Tc

cuprates with infinite interaction Ud on the Cu-site and finite O-O hopping t′, in addition to the Cu-O
hopping t0. The solution is found for arbitrary Cu-O charge transfer energy ∆pd and small doping δ,
assuming only t′ < 0 for the insulating phase, appropriate for the superconducting cuprates. It is shown
analytically that the Brinkmann-Rice metal-insulator transition is preserved, though shifted to higher
values of ∆pd. To the leading order in t′, the transition conserves its t′ = 0 triple point nature with complete
electron-hole symmetry with respect to doping. This symmetry is broken by logarithmically small terms
related to the t′-induced shift of the chemical potential of the half-filled band from the van Hove singularity.
Qualitative change in the behavior of the effective charge transfer energy is found at finite t′ for large ∆pd.
The prerequisite to MFSB solution is the discussion of the singularities in the 3-band dispersion of the
Emery model. The range of parameters leading to the touching of two bands is determined analytically,
showing that it is wider than known before. The anticrossing (rather than touching) is however consistent
with the observed Fermi surfaces, leading to the MFSB theory with t′ < 0. The detailed comparison of
the theory with the angle-resolved photoemission spectroscopy data in La2−δSrδCuO4, Bi2Sr2CaCuO8+δ

and YBa2Cu3O7−δ is finally given, using the properties of the resonant band of the physical fermions,
discussed in the companion paper. Fast evolution of the band-structure with doping is explained for LSCO.
The three-band fits for Bi2212 and Y123 are equally good, although the Luttinger sum rule is not obeyed
there.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor –
74.72.Dn La-based cuprates – 74.25.Jb Electronic structure – 79.60.-i Photoemission and photoelectron
spectra

1 Introduction

Long after the discovery of high-Tc cuprates their phys-
ical behavior, including the mechanism of high-Tc su-
perconductivity, is not understood [1,2]. Understanding
means here that there is an approach which starts with
a set of bare particles and their interactions and which,
upon renormalization, gives high-Tc superconductivity.
At present it is not even known whether a possibly
strong [3] electron-phonon interaction is to be included or
Coulomb repulsion suffices. In addition, some procedures,
like LDA [4], emphasize the multi-band single-particle
properties, treating correlations in simplified way, and the
others, like the analysis of the Hubbard model [5], insist on
accurate correlation effects, but within simplified single-
band scheme.

Physically reasonable bridge between these two ex-
tremes is provided by the Emery model for the conducting
CuO2 plane [6], which retains three bands, one per Cu or O
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site in the unit cell. The corresponding tight-binding bare
single-particle parameters are the difference between the
O and Cu site energies, ∆pd, the Cu-O hopping t0 and the
O-O hopping t′. Various interactions can be added to this
model, the largest usually assumed to be the repulsion Ud

on copper-site.

Large Ud Emery’s model has two principal limits [7].
When Ud < ∆pd only the lowest, conduction band is ap-
preciably renormalized, i.e. the model reduces to the out-
right Hubbard case. On the other hand, when Ud > ∆pd,
all three bands get involved into the renormalization. The
three site structure is conserved at the outset in this, so
called (Cu-O) charge-transfer (CT) limit. Actually, within
the CT limit two regimes are to be distinguished further,
with respect to the location of the doped charge [7]. When
it goes to the Cu-site, a Hubbard-like situation is obtained
again, whereas when it goes to the O-site, apparently three
sites have to be retained. These two limits correspond to
the electron (δ < 0) and hole (δ > 0) doping of the CuO2

planes, respectively. Paraphrasing the above statement,
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the Hubbard-like limit appears for δ < 0 irrespectively
of the ratio of Ud and ∆pd, provided that they are suf-
ficiently large with respect to t0 and t′, while for δ > 0
CT nature might prove important. Maximal Tc is achieved
upon δ > 0 hole-doping, and this is the regime most often
studied [8–10] within the Emery model.

A particulary simple limit, which exhibits the qualita-
tive features described above, takes Ud > ∆pd CT sit-
uation to its Ud = ∞ extreme. Large Ud case is usu-
ally treated by introducing auxiliary fermion and boson
fields [11,12] on the interaction (Cu) site, one of each,
when Ud = ∞. When the mean-field approximation in
the fermion-slave boson (MFSB) decoupling is applied,
the three-band structure of the Emery model is obtained
with renormalized, effective band-parameters ∆pd → ∆pf ,
t0 → t, while t’ remains non-renormalized [13].

The analytical form of this mapping was found long
time ago for t′ = 0 [7]. The main feature is the Brinkmann-
Rice (BR) transition at δ = 0, from the t = 0 state at
∆pd > 4.74t0 to finite t state, below. The transition point
is, as emphasized here, the triple point, where the CT
δ = 0+ and the Hubbard-like δ = 0− solutions for ∆pf

at ∆pd > 4.74t0 meet unique, finite, t solution for ∆pf

at ∆pd < 4.74t0. On the other hand, for large ∆pd, the
effective site energy ∆pf of the 0+ branch follows the fa-
mous ∆pf ≈ t20/∆pd [7] asymptotic law, analogous to the
behavior of the singlet/triplet site energies in the Zhang-
Rice t-J [14] derivative of the Emery model.

The introduction of finite t′ into the theory was mo-
tivated mainly by two observations. First, t′ removes the
Fermi energy of the half-filled δ = 0 band from the van
Hove (vH) singularity [3,15,16] and opens thus the ques-
tion of the apparent electron-hole symmetry. Second, t′ is
important to understand the rotation of the conduction
axes from the Cu-O direction to the O-O direction [13],
observed by changing the chemical composition of the
high-Tc cuprates [17,18]. This led to various numerical
solutions of MFSB equations [19–21], usually for very re-
strictive choices of parameters. But even the most com-
plete numerical calculations [21] have not answered clearly
the basic question concerning the stability of t = 0 solu-
tion at finite t′.

This problem is quite apparent for δ = 0+ case at large
∆pd when ∆pf (t′ = 0) mentioned above, vanishes after
crossing 4|t′|. As 4|t′| is the width of the oxygen band, the
effective site energy ∆pf on the Cu-site, if weakly affected
by t′, enters the O-band. The charge is then transferred
to oxygens and the conduction channel t �= 0 is opened.
The question of the stability of the t = 0 solution is thus
related to to the behavior of ∆pf at large ∆pd and finite t′.
On the other hand, close to the BR point t = 0 stability
problem can be rephrased: At finite t′ the Fermi level µ0

of the undoped δ = 0 band is removed from the vH sin-
gularity. The same effect occurs at t′ = 0 by finite doping
δ and, as it is well known, makes t = 0 solution unsta-
ble, suppressing the BR transition. The question is then
whether the BR transition persists for δ = 0 and finite t′,
or it is replaced by a crossover with t always finite. Al-
though the existing numerical calculations suggest [19,21]

(but do not prove) that the BR transition on ∆pd ≈ 4.74t0
is conserved, the rigorous proof has to be carried out on
very small scale κF , measuring the distance of the Fermi
level of the half-filled δ = 0 band from the logarithmic
vH singularity: κF log|κF |−1 ∼ t′/∆pd. A related question
concerns the behavior of t and ∆pf around ∆pd ≈ 4.74t0
for finite t′, which also requires analytical approach.

The difficulties in treating analytically t′ �= 0 problem
can be traced back to two facts. The first is that Ud is
local (local constraint at Ud = ∞), which in the MFSB
approximation introduces the integrals over the recipro-
cal space k. The usual MF minimization before k inte-
gration [7,22] results then in the three coupled integral
equations. Second, k integrals involve only renormalized
parameters ∆pf and t, together with invariant t′, i.e. a
given renormalized band-structure is to be assumed and
then connected by MFSB equations to bare values of pa-
rameters ∆pd and t0. This does not lead necessarily to
apparent contradictions even if inadequate renormalized
band regime is chosen for given bare values ∆pd, t0 and t′.

The first step is therefore to discuss the renormalized
three-band structure in whole ∆pf , t, t′ parameter-space
and to determine qualitatively which regions of this space
correspond to strong renormalization. Once this is accom-
plished, the renormalized band-structures are to be used
in MFSB equations to determine the associated bare val-
ues of ∆pd, t0 and t′.

The second step is to deal with integral nature of the
MFSB equations. This can be done by inverting the usual
order of the operations into integration over k first and
the differentiation later, k integration performed to the
leading order of t′. The results are three coupled algebraic
rather than the integral MFSB equations.

This procedure is carried out here. It generates the
analytical expressions which answer all basic questions
mentioned above, together with a number of other re-
sults. In particular, the experimentally measured band-
structure with their doping dependencies can be compared
to the renormalized MFSB results in the whole parameter
space. Prerequisite to such comparison is the knowledge
of the propagators for physical particles. This problem
is discussed in the companion paper [23], arguing that
the MFSB renormalized dispersion appears as a resonant
band of the physical single-particle spectrum. The phys-
ical spectrum is shown there to obey the Luttinger sum
rule, which is important for positioning the Fermi surface,
the property best seen in the angle-resolved photoemission
spectroscopy (ARPES) experiments [24–28].

In Section 2, the MFSB approach to the Ud = ∞
Emery model is thus briefly reviewed. Section 3 is de-
voted to the description and discussion of the possible
three-band structures, which, as more or less renormal-
ized, enter the MFSB equations. In Section 4 the MFSB
equations are derived in the algebraic form and solved an-
alytically in the appropriate limits. Section 5 compares
the predictions of the Ud = ∞ MFSB theory with the
experimental results. Finally, Conclusion summarizes the
new results obtained here and enumerates the remaining
open questions.
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2 MFSB approach - General

In this section Ud = ∞ MFSB formulation [12,16,23] is
briefly reviewed, with the emphasis on the aspects im-
portant for the present approach. The free part h0 of the
Emery Hamiltonian is

h0 =
∑

s,R

{εdn
d
R + εp

∑

i=x,y

np
R,i

+
∑

i=x,y

[t0c
†
R,s(pR,i,s +

∑

r

t0(r)pR+r,i,s + h.c.)]

−t′[p†R,x,s(pR,y,s +
∑

r

t′(r)pR+r,y,s + h.c.)]}, (1)

where c†R creates a hole on the Cu site and p†R,i creates it
on the O site, R is site index, s is spin index and r runs
over the nearest neighbors. Here we use the usual, non-
magnetic, undistorted CuO2 square unit cell with dx2−y2

ionic wave functions associated with the Cu site, whereas
the oxygen sites on the x and y axes are associated with
the px and py states, respectively. The phases of the in-
volved states, i.e. the signs of t0(r) and t′(r) are chosen in
usual way [13,29]. When the local interaction Ud on the
Cu sites Ud

∑
R nd

R,↑n
d
R,↓is taken to infinity with respect

to ∆pd = εp − εd, the splitting of O and Cu site energies,
the physical d-fermion operator c†R is conveniently rep-
resented by a two particle entity f †

RbR composed of the
f -fermion and the b-boson. Double occupancy is forbidden
by the requirement

QR = nf
R + b†RbR = 1 (2)

taken into account through the Lagrange multipliers λR

in
H = h0 +

∑
λR(QR − 1) (3)

i.e. allowing the fluctuations in QR. In this case, the rela-
tion between nd

R and nf
R has to be specified, in particular

for the representation of the εd term of h0 in equation (1).
The usual choice [7] is

nd
R = nf

R (4)

extending this equality from QR = 1 subspace to the
whole boson-fermion Hilbert space.

The usual [23] MFSB procedure approximates the
ground state of H by the product of the boson and spin
unpolarized fermion states. Taking λR = λ in equation (3)
and allowing for 〈b†R〉 = 〈bR〉 = b0, the approximate
ground state energy of H, given by equations (3) and (4) is

E = E0 + (∆pd − ∆pf )
(

t2

t20
− 1

)
, (5)

where ∆pf = εp−εd +λ = ∆pd +λ and t = t0b0. E0 is the
ground state energy of free auxiliary fermions, described
by the non-interacting Emery Hamiltonian (1), with the

replacement c†R by f †
R, εd by εf = εd + λ and t0 by t, εp

and t′ being unchanged. E0 is thus given by

E0(∆pf , t, t′, x) =
∫ µ

εg(ε)dε, (6)

where g(ε) is the density of states of the three-band Emery
model. Since b0 and λ, i.e. t and ∆pf , are to be determined
from the minimization of E of equation (5) at fixed num-
ber of particles, 1+δ = 〈nf 〉+2〈np〉, (using again Eq. (4)),
additional equation relating δ and µ is required,

1 + δ =
∫ µ

g(ε)dε. (7)

Minimizing equation (5) with respect to ∆pf gives
[16,23,30]

〈nd〉 + t2/t20 = 1 (8)

with
〈nd〉 = − ∂E0

∂∆pf
(9)

according to equation (4). Clearly, equation (8) forbids
double occupation of the Cu site only at average, 〈nd〉 ≤ 1.
The minimization of E with respect to t gives [16,23,30]
the second MFSB equation

〈nB〉 = 2
t(∆pd − ∆pf )

t20
(10)

with
〈nB〉 = −∂E0

∂t
, (11)

〈nB〉 denoting the renormalized Cu-O bond-charge. Note-
worthy, 〈nB〉 vanishes at t = 0, corresponding to the Mott
localization of the f -fermions.

While equations (5–9) determine the approximate
ground state energy and the corresponding average charge
distribution 〈nd〉 and 〈np〉, a step further is required [23]
to find the propagator of the physical particles, impor-
tant for the comparison to other experiments, ARPES in
particular.

This step, described in detail in the companion pa-
per [23], consists of including the fluctuations of auxiliary
fields around their saddle point values on neglecting their
interaction. For the propagator of the physical fermion be-
tween Cu-sites this results [23] in the resonant band and
the dispersionless background structure

Gd(ω,k) = (1 − 〈nd〉)Gf (ω,k)

+〈nd〉
∫

dk
(2π)2

Ĝf
c (ω + ∆pd − ∆pf ,k)(12)

where Gf is the f -fermion propagator. Its projection Ĝf

on the occupied states of the conduction band,

Ĝf
c (ω,k) =

|mc
f (k)|2θ(µ − εc(k))
ω − εc(k) − iη

, (13)

contains f -fermion MFSB renormalized dispersion εc(k)
of the f -fermion conducting band (assuming single for
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simplicity) and |mc
f (k)|2 describes the projection of the

corresponding k state on the Cu-site. As clear form equa-
tions (12, 13), the position of the resonant band is as-
sociated with εf and that of the dispersionless back-
ground with εd. It is appropriate to mention here that
MFSB theory neglects the “lifetime” effects (present in the
treatment beyond it, such as non-crossing approximation
(NCA) [31] or dynamical mean field theory (DMFT) [10]),
emphasizing spatial dispersions, i.e. the k dependencies.
In addition, equations (12–13) should not be used for too
small δ, although they give approximately the site en-
ergy εf of the t-J singlet, unlike its dispersion, dominated
by magnetic correlations.

The propagator (12) satisfies [23] the Luttinger sum
rule: with µ calculated from the MFSB equation (7) for
f -fermions the number of d-holes on the Cu-site in the res-
onant band is (1 − 〈nd〉)〈nd〉, while in the background it
is 〈nd〉2, altogether this makes 〈nd〉 of equations (4–8). In
other words, the Fermi surface in the MF f -fermion con-
duction band εc(k) encloses through equations (4–8) just
as many f -particles as the Fermi surface of the same shape
of the resonant band of equation (12), contribution of the
background added of the physical d-particles; the Fermi
surface calculated in the MFSB theory, equation (7), is
observable as the physical Fermi surface in the resonant
band. This conclusion is crucial for the comparison of the
present theory with ARPES experiments.

Equations (7, 8, 10) which determine the physical
propagator Gd(ω,k) of equation (12) in the reciprocal
space, including the local property 〈nd〉, represent a set of
coupled integral equations. For a given renormalized band
structure characterized by ∆pf , t, t′, this set of equations
determines the corresponding bare parameters ∆pd and t0
for a chosen δ. The inversion of these equations is thus
required to find ∆pf and t as functions of bare parame-
ters ∆pd, t0, t′ at given δ.

In its full generality, this is a difficult problem. The nu-
merical procedures [13,19–21] usually assume the form of
the renormalized 3-band solution, i.e. choose the regimes
for ∆pf , t, t′ and solve the MFSB equations to find the
corresponding ∆pd and t0. This is usually restricted to a
small number of points in the ∆pf , t, t′ parameter space.
Related and already mentioned difficulty arises from the
fact that when a given ∆pf , t, t′ is inserted into equa-
tions (8–11), it “produces” a set of ∆pd and t0 with no
apparent contradictions when the latter actually corre-
spond to a different regime of ∆pf , t, t′.

It is thus obviously important to distinguish first be-
tween all the regimes of ∆pf , t, t′ 3-band model and
to determine qualitatively the corresponding regimes of
bare parameters ∆pd, t0 and t′. Using in the next step
the appropriate expressions for the renormalized band-
structure, the MFSB equations (7)-(11) are to be inverted
in order to find ∆pf , t as functions of ∆pd, t0 t′ and δ.
This procedure is carried out here analytically, assuming
signt′ = −sign∆pf and δ small for arbitrary ∆pd/t0, t′/t0,
interesting for high-Tc superconductors.

3 Three band-structure

The first step consists thus of the discussion of the three
band-structure of the effectively free Emery model (1)
characterized by ∆pf , t and t′. The Bloch states are
built in the usual tight-binding way from dx2−y2 , px

and py states in each unit cell and the effective band-
energies εi(k) are found by diagonalization of the corre-
sponding 3 × 3 Hermitian matrix.

This diagonalization leads to the secular equation of
the third order

ε3 + 3pε + 2q = 0, (14)

where

p = −[α + βf1(k) + γf2(k),
q = a + bf1(k) + cf2(k) , (15)

with

a =
1
27

∆3
pf , b =

2
3
t2∆pf , c = −16

3
t′[t′∆pf + 3t2],

α =
1
9
∆2

pf , β =
4
3
t2, γ =

16
3

t′2 , (16)

and

f1(k) = sin2 kx

2
+ sin2 ky

2
,

f2(k) = sin2 kx

2
sin2 ky

2
· (17)

Energy ε is measured with respect to ε̃ = (2εp+εf)/3. The
dispersion f1 is associated in equations (16) and (17) with
Cu-O hopping t and describes propagation along the main
axes of CuO2 unit cell while f2 is related to O-O hopping
t′, denoting the propagation along the diagonals. The ro-
tation of the Fermi surface by π/4 observed in LSCO cor-
responds then here, quite generally, to the transition from
the dominant O-O hopping t′ to the dominant effective
Cu-O hopping t.

It should be noted further that equation (14) is invari-
ant on the simultaneous change of sign ∆pf , t′, ε irrespec-
tively of the sign of t. This parametric symmetry means
that the band structure εi(k) for sign∆pf = signt′ < 0 or
sign∆pf = −signt′ < 0 can be obtained from the εi(k) for
sign∆pf = signt′ > 0 or sign∆pf = −signt′ > 0 respec-
tively by the reflection on the k plane. We shall therefore,
without the loss of generality, carry out the theoretical
discussion for t, ∆pf > 0 and for both signs of t′.

It can be finally noted that the band structure in the
electron language, usual in the ARPES analysis is ob-
tained from the band structure in the hole language used
here also by the reflection on the k plane.

3.1 Small t

At the outset it is instructive to start to consider the limit
of small t, because all of the conceptually important prop-
erties of the 3-band structure occur already in this limit
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Fig. 1. t = 0 band-structure.

on the simple perturbative level. Moreover, this limit will
turn out here as central to the MFSB theory of the high-
Tc superconductors, although the opposite limit of small
t′ (or even t′ = 0) [7] was usually used in this context.

The t = 0 band structure of equation (14) is given by
dispersionless copper level

ε
(0)
L (k) = −2

3
∆pf (18)

and by two oxygen bands

ε
(0)
I,U (k) =

1
3
∆pf ± 4|t′|f2. (19)

and shown in Figure 1 for ∆pf > 4|t′|.
As apparent from equation (19), oxygen two band

structure unfolds into a single oxygen band in the
√

2
Brillouin zone, which corresponds to the 1/

√
2 unit cell

containing one oxygen, as appropriate for oxygens when
they are decoupled from copper. This means in partic-
ular that the degeneracy of two oxygen bands of equa-
tion (19) along ΓX line in Figure 1 corresponds to the
two-dimensional logarithmic vH singularity in the density
of states rather than to the extended one-dimensional one:
the energy varies linearly with k through ΓX line.

Introducing further small t and considering energies ε

close to ε
(0)
L on assuming that ε

(0)
U is far from ε

(0)
L , the

iterative solution of equation (14) is given by quadratic,
rather than cubic equation

(ε − ε
(0)
L )(ε − ε

(0)
I ) = −2t2(3f1ε + 16t′f2)

ε
(0)
L − ε

(0)
U

, (20)

valid for ∆pf ≈ 4|t′| or ∆pf > 4|t′|. Equation (20) is
characteristic for band anticrossing, familiar from Wigner
perturbation theory, to which it is essentially equivalent.
Characteristic anticrossing situation is shown in Figure 2.
Simplifying for clarity, anticrossing occurs when ε

(0)
L is

chosen equal to ε
(0)
I in equation (20), but the finite value

of the numerator on r.h.s. of this equation makes εL differ
from εI . Indeed, for sign∆pf = −signt′, the numerator is
finite, noting that, for that purpose, ε in it can be replaced
by ε

(0)
L of equation (18). However, this numerator can van-

ish for sign∆pf = signt′. E.g. for band-crossing in M point
of BZ f1 = 2, f2 = 1, ε

(0)
I = ∆pf/3 − 4|t′| = ε

(0)
L , the nu-

merator vanishes exactly and two bands touch each other
εL = εI = ε

(0)
L = ε

(0)
I . As suggested earlier, touching per-

sists for sign∆pf = signt′, when Cu-level ε
(0)
L enters into

Fig. 2. Anticrossing of two lower bands for ∆pf/t′ = −4 and
t/t′ = −0.3.

Fig. 3. Equienergetic contours of εL obtained for ∆pf > 0
and small t′ ≤ 0; (a) – energy ε0 that separates the number
of states below and above it in two halves, (b) – equienergetic
curve εvH that passes through van Hove points, dashed line
– equienergetic line at t′ = 0 that passes through van Hove
points at εvH .

the oxygen ε
(0)
I band, as it will be further discussed below,

for the cubic equation (14). There, it will be also shown
here that in addition to the original suggestion [29], touch-
ing can occur for sign∆pf = −signt′, but at sufficiently
large t.

Before going to this discussion, equation (20) can be
used to illustrate an important topological property of the
lowest band, also related to the relative sign of ∆pf and t’.
This can be best seen on simplifying further equation (20)
by assuming that ε

(0)
L is far from both ε

(0)
U,I . Wigner equa-

tion (20) reduces then to the Schrödinger perturbative ex-
pression

ε − ε
(0)
L = −4t2(∆pff1 − 8t′f2)

∆2
pf − 16t′2f2

2

, (21)

valid for ∆pf > 4|t′|, t. It appears from equation (21) that
while t determines the overall scale for the dispersion of
the band εL(k), t′ measures itself with respect to ∆pf ,
independently on t: t′ can be treated as small for |t′| <
∆pf .

For t′ small, the equienergetic line εL(k) = εvH

through the X point of BZ is bent towards Γ point for
sign∆pf = −signt′, as shown in Figure 3, or towards M
point, if sign∆pf = signt′.

The same conclusion applies to εU , which becomes
the lowest band εc by parametric symmetry of equa-
tion (14), when ∆pf < 0. Fermi surfaces measured in
high-Tc materials are bent towards Γ point, indicating
sign∆pf = −signt′. As this can occur either in εL for
∆pf > 0, t′ < 0 or in εU for ∆pf < 0, t′ > 0, the
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absolute sign of ∆pf or t’ cannot be determined from
Fermi surface topology.

As discussed above, the relative sign of ∆pf and t′
defines also the anticrossing/touching properties of the
3-band structure. The following subsection is therefore
dedicated to the analysis of the latter property.

3.2 Band degeneracy

In the analogy with the general condition for the band-
touching in equation (21) which is the vanishing of the
discriminant of the quadratic equation, the general condi-
tion for the band-touching in the full cubic equation (14)
is the vanishing of its discriminant, i.e.

D = q2 + p3 = 0 (22)

with p and q given by equations (15–17). For D = 0 with
p3 = −q2 �= 0, two roots of the cubic equation are degen-
erate and different from the third one. The hermiticity of
the 3 × 3 matrix underlying equation (14), ensures that
D ≤ 0, i.e. that all the roots are real. This means that the
zero of D at a given point k of the BZ is also the maxi-
mum of D, which can be conveniently associated [15,16]
with

∂D

∂f1
= 0 (23)

and
∂D

∂f2
= 0. (24)

The system of three equations (22–24) for two unknowns
kx and ky is overdefined and thereby does not posses
a solution for general values of the two parameters in-
volved, e.g. t/t′ and ∆pf/t′. Nevertheless,there exists a
whole region in this (two)-parameter space, where three
equations (22), (23) and (24) can be satisfied simultane-
ously.

Equations (23–24) allow to separate out the trivial
f1 = 0 degeneracy of two oxygen bands in Γ point, which
occurs irrespectively on the values of parameters. This
lowers the degree of coupled equations in f1. It becomes
also apparent that equation (24) is satisfied for symme-
try reasons on ΓX and ΓM axes of BZ, irrespectively
on the value of f1. It is then possible to show analyti-
cally [15,16] that ∆pf/t′ and t/t′ can be tuned to bring the
solution of the two other equations to the high-symmetry
axis, specifically to kx = ky ΓM line, and to determine
the range of parameters for which this can occur. For
sign∆pf = signt′, it has already been shown above that at
small t for ∆pf = 4t′, the touching occurs for f1 = 2, i.e.
at M point of BZ. For 0 < ∆pf/t′ < 4, it occurs at

2f1 =
∆pf

t′
+

t2

t′2
(25)

on the isolated point on ΓM line. When t2/t′2 in-
creases,the touching point moves from t ≈ 0, 4f2t

′ ≈ ∆pf

(Fig. 1) towards M point (Fig. 4a), which is reached
(Fig. 4b) for f1 = 2 in equation (25).

Fig. 4. Three-band structure for ∆pf > 0: ∆pf/t′ = 2: at
t2 large, εL and εI are well separated (a), at critical value of
t2/t′2, given by equation (25), they touch at the M point of the
BZ (b), for smaller values of t2/t′2, the touching point moves
down the zone-diagonal towards Γ (c).

Figure 4c illustrates the situation for even larger t2/t′2.
For sign∆pf = −sign t′, the anticrossing found above for
small t, with εI bent towards εL on M point (Fig. 2),
spreads for large t all over the BZ. Finally, as shown on
Figure 5, εL and εI are repelled even in M point and εI

becomes flat [16], (somewhat unexpectedly all over the
BZ, as it is for t′ = 0) for

t2

t′2
= −∆pf

2t′
· (26)

This corresponds to the appearance of the double zero in
D at f1 = 0, i.e. to the touching of εU and εI in Γ.

For even larger values of t/t′, εI bends towards εU

(Fig. 5b) and the touching moves from Γ towards M for
t2/t′2 > −∆pf/2t′. Finally, for f1 = 2 in equation (25),
the touching of εI and εU reaches M point (Fig. 5c). For
even larger values of t2/t′2, a perturbative regime with
respect to small t′ is reached (Fig. 5d), similar to the one
for ∆pf 
 4t′ when sign∆pf = signt′ (Fig. 4c).

The results of the present analysis are summarized in
Figure 6. which associates different regimes of the 3-band
structure with the corresponding parts of ∆pf/t′, t/t′ pa-
rameter space.

Noteworthy in this figure is that the M touching
line f1 = 2 of equation (25) is continuous through the
∆pf/t′ = 0 point. In the presentation adopted here, with
∆pf > 0, this corresponds to t′ varying from + to −
infinity and, respectively, the touching from εI/εL to
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Fig. 5. Three-band structure for ∆pf > 0: ∆pf/t′ = −4: at
t2/t′2 large, εU and εI are degenerate only in Γ point (a),
at critical value of t2/t′2, given by equation (25), they touch
at the M point (b), for smaller values of t2/t′2, the touching
point moves down the zone-diagonal towards Γ point(c), at
t2/t′2 given by equation (26), εI becomes flat (d).

Fig. 6. Different kinds of three-band topology depending on
the values of the effective parameters, with ∆pf > 0: for t′ > 0
and ∆pf/4t′ > 1, εL and εI are separated (bar), for a critical
value of t2/t′2, touching between two lower (t′ > 0) or upper
(t′ < 0) bands occurs at the M point (dots), region of band-
touching is limited with the condition (26) (line) and evolves
into the anticrossing behavior of two lower bands.

εI/εU . The continuity, not obvious in this way, becomes
clear if Figure 6 is read using the parametric symmetry of
equation (25), as corresponding to the change of sign ∆pf

at fixed t′ > 0 (Fig. 5 should be used then with ε → −ε).
The touching then occurs always in the lowest band to-
wards which εI bends for t′ > 0 whatever is the sign of
∆pf . A somewhat larger value of t’ is then required, con-
tinuously at ∆pf = 0, for εI to cross the gap ∆pf to εL

for ∆pf > 0 than for ∆pf < 0 when the gap to εU ceases
to exist.

3.3 Extended van Hove singularities

Touching of two bands at M point is interesting from an-
other respect. From Figures 4 and 5, it can be seen that
the above touching is accompanied by the absence of the
dispersion on the XM line, either in εL or in εU band. This
leads to the coalescence of the step-like vH singularity [24]
at the bottom of the band (M point) and the logarithmic

Fig. 7. Typical shape of the Fermi surfaces when band-
touching takes place.

singularity at X point in the density of states, resulting in
the extended, 1-d-like singularity. The extended vH sin-
gularity can thus occur in 3-band model, (only) when the
Fermi energy for one hole per CuO2 cell intersects two
bands close to the M point, as illustrated in Figure 7.

This situation has never been observed in high-Tc

cuprates.

4 MFSB equations at finite t′

4.1 Qualitative MFSB analysis

This section begins with several observations concerning
MFSB aspects of different regimes of Figure 6. The ob-
servations in question are based on equation (9) of the
MFSB theory, which requires 〈nd〉 ≤ 1 in such a way that
〈nd〉 = 1 corresponds to t = 0. With one hole per unit cell,
〈n〉 = 1 and for any ∆pf < 4|t′| the holes are necessarily
transferred from Cu to O resulting in 〈nd〉 < 1, i.e. t > 0
regime. Critically renormalized t = 0 regime can thus be
(but not necessarily) stable only for ∆pf > 4|t′|. Consid-
ering Figure 6, this corresponds to ∆pf/t′ > 4 when t′ > 0
and ∆pf/t′ < −4 when t′ < 0.

Critically renormalized regime t = 0 at n = 1 (δ = 0)
depends also critically on doping. This can be easily un-
derstood on invoking again MFSB equation (8) for ∆pf >
4|t′|, allowing t = 0 for 〈nd〉 = 1, but not allowing it for
n = 1 + δ, with δ > 0, which, at t = 0, leads to forbidden
〈nd〉 = 1 + δ.

The stability of t = 0 solution at δ = 0, i.e. the BR
phase transition can be examined using equation (20) for
renormalized band-structure in MFSB equations. Actu-
ally, the simplified version (21) of equation (20) is suffi-
cient for t = 0 small. Since the regime ∆pf > 4t′ for t′ > 0
is ruled out for high-Tc superconductors by the condition
sign∆pf = −signt′ obtained from the topology of the ob-
served FS, the attention here will be focused on the sta-
bility of t = 0 solution in the anticrossing case ∆pf > −4t′
for t′ < 0.

Noncritical renormalization t > 0 at δ = 0, for
∆pf < 4|t′| will also be considered in order to complete
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well-known t′ = 0 MFSB result with the illustration how
(fast) weakly renormalized regime ∆pf ≈ ∆pd and t ≈ t0
is reached in this case.

4.2 Conducting band at the limit of small t′

It is convenient to start the quantitative discussion with
the limit ∆pf > 4|t′| when t′ term in the denominator
of equation (21) can be neglected. Actually, in the limit
of t′ small, equation (21) can be replaced by more general
expression

εL = −1
2

[
∆pf +

√
∆2

pf + 16t2f1

]
+

32t2t′f2

∆2
pf

, (27)

which, with |t′| small makes no assumption concerning the
relative values of ∆pf and t. For small t, equation (27) re-
duces to equation (21), except that the energy-origin at
(εf + 2εp)/3 = 0 in equation (21) is shifted to εp = 0
in equation (27), as appropriate for MFSB calculations,
which, in contrast to εf , do not renormalize εp. Equa-
tion (27) does not only determine the MFSB stability for
t = 0, but also for arbitrary t, linearly in t′.

Figure 2 used to illustrate the behavior of εL of equa-
tion (21) for small t′ applies also to equation (27), because
ε = εvH equienergetic line through the van Hove (vH)
points coincides with the diagonal for arbitrary t and is
deformed with t′ in the indicated way. When MFSB equa-
tions are considered with the band εL of Figure 2, it is seen
that they require the integration of the constant (Eq. (7))
or of εL itself (Eq. (6)) up to the Fermi energy µ. These in-
tegrations can be carried out analytically, with controlled
accuracy in t′, by decomposing the integration over k in
three steps. In the first step the integration goes from the
M point to the diagonal in Figure 3. In the second step
the integration covers the range between the diagonal and
the equienergetic εvH line. The departure of εL from the
diagonal is then taken linear in t′. In the third step, the
integration is carried out between two equienergetic lines
εvH and µ with the departure of εL from the diagonal
linearized in t′.

When the procedure is applied to equation (7) for the
number of particles, the total number of states δc intro-
duced by t′ < 0 below εvH is found, as well as the number
of states between two close energies εL. For ∆pf > |t′|, in
the corresponding limit of equation (21), this gives

δc = − 32t′

π2∆pf
, (28)

the position of the Fermi level µ for a given δ, ∆pf (εvH −
µ) = 16t2κF

(
1 +

π2δc

8

)
κF ln

1
|κF | = 8π2(δc − δ), (29)

and, by the differentiation of equation (29) with respect
to δ, the density of states at the energy µ close below (or
above) εvH

nL(µ) =
2∆pf

π2t2

(
1 +

π2δc

8

)
ln

1
|κF | · (30)

Equations (28) and (29) show that the Fermi level of a
half-filled (δ = 0) band is removed from vH singularities.
δc is the doping required at finite t′ to bring it back, and
that doping is, just like the corresponding κF at given δ,
independent on t. The latter property is a consequence
of already noted fact that the overall dispersion scale in
equations (20, 21) or (27) is given by t2, i.e. that t′ af-
fects εL only when t is finite.

Equation (30) can also be obtained by expanding
the closed expression for the density of states avail-
able [15,16,32] in ∆pf > t limit of equation (27), in the
neighborhood of vH singularity. The advantage of equa-
tions (28–30) is however that they describe the effects of
δc and δ small only in terms of the states in the vicinity of
the vH energy, deeper, always filled states thus removed
from the problem.

Expressions analogous to equations (28–30) are ob-
tained from equation (27) for t > ∆pf ; essentially, ∆pf

in equations (28–30) is replaced by t [23]. However, they
are of lesser interest here and we turn to the determina-
tion on the MFSB energy E0 for ∆pf > t, adding from
equation (27) a term quartic in t to equation (21), with t′
neglected in its denominator.

4.3 Inversion of MFSB equations at small t′

While equations (28–30) can be in principle also obtained
by the expansion of the closed expression for the density
of states there exists no such expression for the energy E0

of equations (6) and (27).
Three-steps procedure introduced here provides then

the expansion of E0 from the outset with the same accu-
racy as equations (28–30). Using the described integration
procedure, E0 is straightforwardly found as

E0 = −∆pf (1 + δ) +
µ − εvH

2
(δc − δ)

− 4t2

∆pf
(c1 + δcc3 + δ) +

16t4

∆3
pf

c2 (31)

retaining the term quartic in t. Here k-integration con-
stants ci are given by

c1 = 1.405, c2 = 2.06, c3 = 2.07. (32)

Consistently with equation (27), the terms quadratic
in δc are omitted from equation (31). The (µ − εvH)δc ∼
κF δc term, which is according to equation (29) even
smaller than the omitted δ2

c terms is however retained,
because it is the first term of the logarithmic nature, gen-
erated by equation (27). The logarithmic signature κF

of the 2d vH singularity (30) appears explicitly in this
term, which is on the other hand clearly related by equa-
tion (29) to breaking at δ = 0 of the local, conduction band
electron-hole symmetry with respect to the vH singular-
ity. The definition of κF in equation (29) shows however
that this term is proportional to t2/∆pf , i.e. that it can be
merged with the third term in equation (31). These terms
vanish at t = 0, i.e. neither δc, nor κF δc can suppress
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the BR transition to the t = 0 state, contrary to what is
suggested by equation (29) itself, where δc appears as the
effective doping.

Although δc and κF δc do not suppress the BR transi-
tion, they shift its position, change its nature and modify
the behavior far from the transition point. The role of δc

and κF δc can now be discussed using equation (31) in
MFSB equations to obtain

〈nd〉 = 1 + δ − 4t2

∆2
pf

[
c1 + 2δcc3 + 6κF δc + (1 − 2κF )δ

− 12t2

∆2
pf

c2

]
= 1 − t2

t20
(33)

and

〈nB〉 = − 8t

∆pf

[
c1 + δcc3 + 2κF δc + (1 − 2κF )δ

− 8t2

∆2
pf

c2

]
=

2t

t20
(∆pd − ∆pf ). (34)

It should be emphasized once again that the main simplifi-
cation in the derivation of these equations corresponds to
the use of three-step k integration procedure to find E
and µ, (i.e. κF ) before taking slave-boson derivatives,
rather than taking these derivatives before k integration,
as usual in the conventional theory. Also, in contrast to
the conventional theory, where the grand-canonical poten-
tial Ω = E − µ(1 + δ) is usually used to perform MFSB
derivatives with respect to ∆pf and t at constant µ, at
t′ �= 0 it is simpler to use E0 of equation (31) to find
the derivatives at constant δ. In particular, as already ex-
plained below equation (29) κF does not depend on t at
constant δ.

Equation (29) and second equalities (33) and (34) in-
vert analytically three MFSB coupled integral equations,
which express ∆pd and t0 as functions of ∆pf , t, t′, µ into
(only two, when κF can be omitted) algebraic equations,
which solve for ∆pf and t as functions of ∆pd, t0 and δ,
linearized in t′. These solutions are considered next.

4.4 Vicinity of BR transition, ∆pd ≈ ∆cr
pd at small t′

In order to describe the effect of δc and κF δc on the po-
sition and the nature of the BR transition in the spirit
of the perturbative treatment of t′, it is convenient to
expand equations (33) and (34) around t′ = 0 BR crit-
ical point. As well known, and also easily seen from equa-
tion (33) and (34), the latter occurs at ∆pd = ∆cr

pd(t
′ =

0) = 4.74t0
√

c1 with ∆pf = ∆cr
pf (t′ = 0) = ∆cr

pd/2. Setting
thus

∆pd = ∆cr
pd(1 + η), (35)

2∆pf = ∆cr
pd(1 + 2η + ε), (36)

and assuming ε, η small, equation (34) becomes

2c2
1t

2 = c2t
2
0(ε

2 − 2η + a2) (37)

to the leading order in ε, η, and t/t0. Noteworthy, the
term linear in ε cancels out in equation (37), making ε2

term important. Inserting equation (37) in the expanded
equation (33), one finds

4c2δ = c2
1[ε

2 − 2η + a2][4ε − 2η + 2a1 − 3a2] (38)

to the same degree of approximation, with

c1a1 = 2δcr
c c3 + 6κcr

F δcr
c + δ(1 − 2κcr

F ),
c1a2 = δcr

c c3 + 2κcr
F δcr

c + δ(1 − 2κcr
F ), (39)

in which δc and κcr
F terms, appearing in equation (33)

and (34), taken at ∆pf = ∆cr
pf (t′ = 0), are easily recog-

nized. equation (38) determines ε(η), which,when inserted
in equation (37) and equation (36) gives t and ∆pf respec-
tively.

The case t′ = 0, δ = 0 is considered first. As required,
constants ai vanish and the solutions of the conventional
theory are recovered: ε(η) = ±√

2η and t = 0 for η > 0
and 2ε = η, t2c2 = −t20c

2
1η for η < 0, i.e. above and be-

low BR point at η = 0. The upper and the lower branch
±√

2η of the t = 0 parabola (37) correspond respectively
to the limits δ = 0± for the doping δ. At t = 0, δ = 0 all
the states enclosed by the two branches are possible since
degenerate in energy E = −∆pd of equations (5) and (31),
irrespectively on the value of ∆pf (i.e. λ), they corre-
spond to. Three solutions meet in the single η = 0, ε = 0
point, which is thus, as emphasized here, the triple phase-
transition point.

Taking in the next step finite a1,2 in equations (37)
and (38), but keeping δ = 0, it can be easily seen that the
zeros of two brackets in equations (38) meet at 2η̂ = a2

and 2ε̂ = 2a2 − a1. Omitting for the moment small κF δc

terms in equation (39), it is found that three solutions of
equation (38) meet again in the apex of 2a2 − a1 = 0 of
the t = 0 parabola (37), i.e. that to the leading order in
δc the triple point nature of the t′ = 0 BR transition is
conserved. The BR point is only shifted in equation (35)
to the position 2η̂ = a2 linearly in t′. Turning now to the
doping dependencies, it is easily seen that the solution ε(η)
of equation (38) is much more sensitive to the “external” δ,
l.h.s. of equation (38), than to the “internal” δ entering
this equation through a1 and a2 of equation (39). In the
triple point itself, this leads to ε̂ ≈ δ1/3 and t2 ≈ δ2/3 with
full electron-hole (δ → −δ) symmetry.

The complete behavior ε(η) + 2η of equation (36) vs.
δ is illustrated in Figure 8. Obviously this figure also ap-
plies to the t′ = 0 situation putting a2 = 0. Together
with the observation that t vanishes above the BR point
(at 2η̂ = a2) in whole δ = 0 region, and it is finite oth-
erwise, Figure 8 represents a phase diagram associated
with E0 of equation (31): the hole-doped and the electron-
doped metallic phases, separated below the BR point by
the δ = 0, t �= 0 line, meet in the triple point with the
δ = 0 insulating phase. Actually, the phase transition line
is expected to become the crossover line for the quan-
tity 〈b†RbR〉 in more advanced treatments which forbid the
long-range order 〈b†R〉 = 〈bR〉 = b0 �= 0.
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Fig. 8. Dependence of 2η + ε, i.e. ∆pf on η, i.e. ∆pd and
on doping δ, in the neighborhood of the BR transition point.
Solid line: δ = 0, a: δ = 0.12, b: δ = 0.01 (dashed lines), c:
δ = −0.01, d:δ = −0.12 (dotted lines).

Returning to the MFSB theory, as mentioned before,
the terms κF δc are breaking at δ = 0 local conduction
band electron-hole symmetry and this is reflected now in
equations (38) and (39). Indeed, at δ = 0, ε̂ = 2a2 −
a1 differs from zero in the presence of κF δc: the three
solutions no longer meet in ε = 0 apex of parabola (37).
The low ε solution meets at t = 0 the δ+ branch (ε̂ < 0) of
the parabola (37). This is now the point of the 0+ second
order transition. For 0 < δ < κF δc, ε(δ) − ε̂ ∼ δ1/2, t ∼
δ1/2. In contrast to that, for small negative δ the abrupt
transition to the δ− side is foreseen. Since physical κF δc is
very small, these results, well beyond the accuracy of the
existing numerical calculations, are mostly of the academic
value, the main physical result of the present analysis thus
being the conservation of the t′ = 0 triple point nature of
the BR transition to the leading order in t′.

It should be finally noted that the perturbative treat-
ment of t′ is consistent in the vicinity of BR transition
provided that the corresponding δcr

c is smaller than unity,
i.e. that 10|t′| < t0. This inequality is well in the spirit of
the Emery model. However, remembering the particular
role played in MFSB theory by 4|t′| < ∆cr

pf condition, a
somewhat less conservative estimate 2|t′| < t0 for the qual-
itative applicability of the present analysis is obtained.

4.5 Intermediate perturbative range
t0 < ∆pd < t20/|t′| at small t′

When strong inequality |t′| � t0 is assumed, the range of
the applicability of the perturbative treatment of |t′|, i.e.
of equation (33) and (34) extends from the vicinity of BR
point, ∆pd ≈ t0 (i.e. η < 1), to ∆pd 
 ∆cr

pd, although not,
as will be seen later below, to very large ∆pd.

Equation (34) can be easily solved at t = 0 for ∆pf �
∆pd, i.e. for δ = 0+, to give

∆pf =
4t20
∆pd

(c1 + δcc3). (40)

Essentially, weakly modified asymptotic behavior of t′ = 0
theory [7] is recognized here, provided that δc of equa-
tion (28) is smaller than unity, i.e. for ∆pd < t20/|t′|. Equa-
tion (33) gives then the usual t ≈ ∆pf δ1/2 law.

On the other hand, ∆pf of δ− solution approaches ∆pd,
as easily seen from equation (34).

4.6 Asymptotic behavior at |t′| > t20/∆pd, ∆pd large

In summary, the condition for validity of MFSB perturba-
tive treatment of t′ for the 0+ CT branch is that bare O-O
dispersion width 4|t′| is smaller than the width of t′ = 0
bare copper band, t0 close to BR transition and t20/∆pd

far above. For ∆pd ≈ t20/|t′|, ∆pf of equation (40) be-
comes comparable to 4|t′|, δc of equation (28) approaches
unity, and the perturbative treatment of t′, based on equa-
tion (27), breaks. The question then arises whether for
∆pd > t20/|t′|, ∆pf falls below 4|t′|, which, according to
our previous discussion requires t �= 0, or remains above
it, allowing t = 0 insulating state. Essentially related to
the stability of t = 0 solution, this question can be dis-
cussed by replacing equation (27) by equation (21), non
expanded in terms of t′ and quadratic in t. Importantly,
equation (21) insures the continuous transition from the
regime (27), perturbative in t′ to the regime perturbative
in t.

The dominant contribution of the dispersion (21) to
the cohesive energy comes from the states around M
point, as apparent from Figure 2. On the contrary the
states around µ are not important, i.e. E0 is strongly de-
pendent on ∆̃ and weakly dependent on µ, i.e. on δ. Ex-
panding then equation (21) in k in the neighborhood of
the M point, one finds immediately that E0 is logarith-
mical in ∆̃,

E0 ≈ −∆pf (1 + δ) − 2πt2

|t′| log
∆pf

∆̃
· (41)

Through MFSB equation (10) for 0+ branch, this leads to
t = 0 at

∆̃ = ∆pf − 4|t′| ≈ 2|t′|e−
|t′|∆pd

4πt20 . (42)

Equation (42) shows that ∆pf remains above 4|t′|. t = 0
is thus the consistent solution of δ = 0+ MFSB equations
in the whole range ∆pd > ∆cr

pd.
In contrast to that, the asymptotic behavior ∆pf ≈

∆pd of the 0− branch is only weakly affected by t′.
Although t = 0 remains stable for large ∆pd, t′ leads to

the qualitatively important modification of the CT behav-
ior, replacing equation (40) for ∆pf by equation (42). It
should be remembered in this respect that ∆pf of equa-
tion (40) represents the energy scale, which in the cor-
responding t-J model describes the site energy of both
the singlet and the triplet states. It is this energy, which
is qualitatively modified by t′ in the MFSB approxima-
tion (42).

Exponential behavior of ∆pf similar to equation (42)
was previously proposed [22] for the 1d CuO t, t′ model.
It was also suggested there that MF theories are not
sensitive to the dimensionality. However, the appropriate
treatment of the band-dispersion shows that the result
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obtained in [22], should actually be replaced by a power-
law ∆̃ ∼ t20/∆pd, representing the signature of the di-
mensionality of the problem. This basically implies that
the fact that ∆pf saturates at the value of the oxygen
bandwidth does not depend on the dimensionality of the
problem, whereas the saturation law does. In addition
to this, it should be noted that, in 2d situation, in or-
der to have the saturation of ∆pf , the anticrossing limit
sign∆pf = −signt′ > 0 should be chosen, while in the op-
posite case of band-touching, saturation is not expected.
This justifies additionally careful analytical MFSB analy-
sis of the 2d 3-band Emery model, carried out here.

Concerning now doping dependence of ∆pd > t20/|t′|
solution, it is easy to verify that equations (8, 9) with
equation (41), conserve δ ∼ t2 structure analogous to that
of equation (33), except that its perturbative nature in t

requires now t2 < ∆̃∆pf instead of t < ∆pf . As ∆̃ is
exponentially small, t ∼ δ1/2 behavior is reduced to very
small doping δ.

For larger doping, equation (20) should be used instead
of equation (21) in MFSB equations. This would answer
the question whether ∆pf crosses below 4|t′| at finite δ
or whether it remains above 4|t′|. In the former case, t is
expected to reach the values close to t0, while in the lat-
ter case it is likely to saturate on |t′|. Detailed discussion
of this question is therefore desirable, but will be tack-
led upon here only in Section 5 through the fits of the
experimental results.

4.7 Asymptotic behavior ∆pd < 4.7t0, t′ small

Turning now to the regime ∆pd < ∆cr
pd at |t′| < t0 and

δ = 0, shown in Figure 8, after linear decrease of ∆pf with
decrease of ∆pd described by ε = 2η in equation (36), ∆pf

approaches 4|t′| again, heading towards its nonrenormal-
ized value ∆pd, this time at finite t. When t2/t′2 reaches
−∆pf/2t′ of equation (26), touching occurs in two upper
bands, but equation (27) continues to hold for the lowest
band εL, the only one important for MFSB renormaliza-
tion. ∆pf becomes smaller than 4|t′|, but at t ≈ t0 so that
t′ acts perturbatively in terms of t′/t [23]: equation (27)
is valid for 0 < ∆pf < 4|t′| and leads to ∆pf = 0 at
∆pd = 1.5t0 + t′.

Actually, equation (27) as written, is valid even for
∆pf < 0 for the lowest (conduction) band εc (now εU ,
according to our notation). For any |∆pf | < t ≈ t0, it is
perturbative in t′/t0 while for large negative ∆pf , when
∆pf ≈ ∆pd, |∆pd| > t0, the regime perturbative in t′/∆pf

is reached again. In other words, equation (27), pertur-
bative in t′, is appropriate for the MFSB theory in the
whole range ∆pd < ∆cr

pd and can be used to solve ana-
lytically MFSB equations [16]. The dependencies on δ are
non-critical here: for ∆pd sufficiently below ∆cr

pd, t/t0 de-
creases [16,37] with δ > 0.

Fig. 9. Three different renormalization regimes depending on
the ratio 4|t′|/∆pf at zero doping δ; Solid line: t′ = 0 case,
dashed line: finite t′ < 0 case with 4|t′|/∆pf � 1 in the neigh-
borhood of the BR point. Dotted line represents the value
of 4|t′|/t0. The plot implies that the perturbative treatment
of t′/∆pf is justified around the BR point, while fails in the
asymptotic (AS) regime. In the latter one, qualitative modi-
fication of the behavior of ∆pf with respect to t′ = 0 case is
found, replacing asymptotical vanishing with the exponential
saturation of ∆pf at the value 4|t′| (the bandwidth of the oxy-
gen band), suppressing thus insulator-metal transition at large
∆pd/t0.

4.8 Final remarks

Figure 9 summarizes the behavior of MFSB solutions at
δ = 0+ for any |t′| < t0, with t′ < 0 above BR point,
and arbitrary ∆pd. The range of stability of the conduct-
ing phase is increased by t′ < 0 (through η̂ > 0, to the
larger values of ∆pd with larger values of ∆pf ). The be-
havior of ∆pf is more complex than the accompanying
behavior of t. The latter raises smoothly and quickly be-
low the shifted (rather than suppressed) BR transition
towards its bare value t0. In this range ∆pf crosses first
4|t′| and then zero heading towards its bare value ∆pd. On
the other hand, above BR transition, ∆pf remains above
4|t′| exponentially close to it for large ∆pd/t0: the neces-
sary condition for the stability of the t = 0 solution is so
fulfilled in the whole range above BR transition.

Noting however that in high-Tc superconductors 2|t′|
is not expected to be much smaller than t0, it is appropri-
ate to comment briefly upon t ≈ 0 regime in the opposite
2|t′| > t0 limit. Equation (41) describes then t ≈ 0 be-
havior in whole range of ∆pd/t0. The BR point occurs at
∆pd above 4|t′| with ∆pf > 4|t′|. The separation of 0±
solutions for ∆pf in the vicinity of BR point, analogous
to that of Figure 8 is governed by the logarithmic nature
of E0 in equation (41). For ∆pd far above 4|t′| the log-
arithmic behavior of E0 is important for the 0+ branch,
leading to the asymptotic behavior (42), while the asymp-
totic behavior ∆pf ≈ ∆pd of 0− branch, the same as for
|t′| < t0, is again only weakly affected by t′.

Finally, before closing the discussion, it is physics-wise
important to summarize briefly the case of doping behav-
ior. Close to triple BR point, tδ ∼ |δ|1/3 with the same
coefficient for positive and negative δ. For ∆pd > ∆cr

pd and
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Fig. 10. Schematic doping dependence of the effective Cu-O
overlap reflecting approximate electron-hole |δ|1/2 symmetry
for ∆pd > ∆cr

pd, scales are given in the text.

Fig. 11. Density of states of the lowest band εL reflecting
the approximate secondary symmetry with respect to doping
δ = δc, which brings µ from µ0 at δ = 0 to εvH at δ = δc.

δ < 0, t ≈ t0
√−δ. Together with the corresponding result

t ≈
√

∆pf ∆̃ δ described above for δ > 0, this shows that
MFSB approximation exhibits an approximate electron-
hole (δ → −δ) symmetry in its phase diagram with respect
to t = 0 at δ = 0, as illustrated in Figure 10.

In addition to this primary approximate symmetry,
MFSB predicts secondary approximate e-h symmetry with
respect to doping δ = δc, required to bring µ on the ap-
proximately symmetrical vH singularity in the density of
states as illustrated in Figure 11, where δc is assumed pos-
itive. For δ < 0, ∆pf is much larger than for δ > 0, except
close to the BR point, and |δc| (δc positive or negative)
is smaller for given t′. For small positive δc (i.e. t′ < 0)
doping δ < 0 moves the Fermi energy farther from the vH
singularity. Both approximate symmetries around δ = 0
and δ = δc, well separated for appreciable δc > 0, are
observed in cuprates, and will be further discussed below.

5 Comparison with experiments

Several crucial aspects of the theory derived here can be
compared straightforwardly with experiments. In the first
place this concerns doping-dependent structure of the con-
ducting band, measured in ARPES measurements. The
corresponding MFSB fits [15,16] will be described in de-
tail below. Although strikingly better than any other two-
parameter fits, they cannot be considered as a final test
in favor of MFSB theory because other strong-coupling
regimes, in particular t0 < Ud < ∆pd (Hubbard limit),

also result in strong doping-dependent renormalization of
the conduction band.

Outright Hubbard limit, ∆pd > Ud predicts however
much stronger asymmetry in electron vs. hole doping (e.g.
δ > 0 is clearly forbidden at Hubbard Ud ≈ ∞, unlike
δ < 0) than the Ud > ∆pd Ud ≈ ∞ case described here.
The experimental phase diagram of the cuprates [28] is
approximately symmetrical with respect to δ = 0, favoring
thus at large Ud the Ud > ∆pd situation.

There is another related aspect of CT case which dif-
fers strongly from Hubbard limit, namely the existence
of the resonant band for δ > 0, well above dispersionless
Cu level for ∆pd large. In principle, this can be seen in
high-energy spectroscopies, in particular in inverse pho-
toemission.

Another qualitative difference between CT and Hub-
bard case concerns the interband transitions, which can
be strongly renormalized in CT case in contrast to Hub-
bard limit. Existence of small interband scales, observ-
able in principle by (MIR) optical and Raman spectro-
scopies [33,34], are therefore important in distinguishing
between two limits. However, small interband scales pre-
dicted in CT case can mix with small scales associated
with long and short-range AF and SC orders present in
both CT and Hubbard cases. This requires very careful
analysis which will be presented in separate papers [35,36],
with the conclusion that they are mostly of the magnetic
origin.

High-energy spectroscopies are usually used to deter-
mine the bare value of ∆pd, associated with the dispersion-
less background according to equations (12) and (13), and
Ud. It is found that [38] Ud ≈ 8−10 eV and ∆pd ≈ 1−4 eV,
i.e. Ud > ∆pd.

With strong evidences in favor of CT case, local prop-
erties of the present MFSB solution can also be exam-
ined. As MFSB theory neglects magnetic (and SC) ef-
fects, only the behavior of the charge channel, i.e. of 〈nd〉
and 〈np〉, 〈nd〉 +2〈np〉 = 1 + δ, is to be examined in
this context. Very convenient local property for this pur-
pose is NQR resonance, which measures the electric field
gradients (EFGs) at the nuclear site. The EFGs depend
strongly on the nature of the local electronic sites involved,
and on their occupation. Apparently, the Cu resonance is
particulary sensitive to 〈nd〉; actually the resonant fre-
quency increases linearly with 〈nd〉 [37]. Experiments on
La2−δSrδCuO4 (LSCO) and YBa2Cu3O7−δ (Y123) show
that Cu resonant frequency increases sharply with dop-
ing δ > 0, smoothly through AF phase transition. As the
first, this means that AF order affects weakly charges 〈nd〉
and 〈np〉, as implicit in MFSB approach. As the second,
this can be matched with the relation 〈nd〉 = 1 − t2/t20,
either by assuming that 〈nd〉 increases (i.e. t decreases)
with δ, or assuming that the dependence of 〈nd〉 on δ
is weak, so that the other contributions to EFGs are
more important. This rules out the vicinity of BR point
∆pd ≈ 4.74t0(1 + 0.74δcr

c ) (Fig. 8), where the dependence
of t on doping is strong, but occurs well above BR point
when the coefficient of the linear relation between t2/t20
and δ > 0 becomes small: all doped holes simply go to
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oxygen 2〈np〉 = δ + t2/t20. The resulting change in Cu
resonant frequency was calculated before [39] and is in
the excellent agreement with experiments. On the other
hand, sufficiently below BR transition 〈nd〉 increases (t de-
creases) with δ > 0 in a way which can also explain [37] the
behavior of Cu resonant frequency. The latter fit suggests
that the additional hole is nearly equally shared between
all three sites, as appropriate for ∆pf ≈ 0.

NQR analysis leaves thus open two possibilities and to
resolve the remaining dilemma, it is appropriate to resort
to the ARPES data. While NQR measures l.h.s. of 〈nd〉 =
1 − t2/t20, ARPES measures its r.h.s. and it is important
to find whether and when two sides are consistent. This is
the question to be discussed now.

5.1 LSCO

Lanthanum system La2−δSrδCuO4 has an obvious advan-
tage when compared to the others examined later, as it has
only one CuO2 layer in unit cell and it is therefore close to
the theoretical model used here. The analyzed data [17,18]
measure the evolution of the valence band and the corre-
sponding FS with the doping, starting from underdoped
δ ≈ 0.05 to overdoped δ ≈ 0.3 regime. These results point
out that the shape of the FS changes with the doping. It
is hole-like (dominant propagation along O-O axis) in un-
derdoped regime (δ = 0.05; 0.1), then passes through van
Hove singularity close to the optimal doping (δ = 0.15)
and finally becomes electron-like (dominant propagation
along Cu-O axis) in overdoped regime (δ = 0.22; 0.3). The
transition to the well-developed metallic regime can be as-
sociated with approaching to the vH energy. According to
these fits, Luttinger’s sum rule is obeyed, i.e. the enclosed
surface of the BZ, normalized to 2 states per CuO2 unit,
is equal to 1 + δ.

The rotation of the propagation axes from O-O to
Cu-O direction with doping implies that t/|t′| increases
sharply with doping. Further analysis of the observed
Fermi surfaces requires either ∆pf small, ∆pf � 4|t′|,
or ∆pf − 4|t′| small, |∆pf − 4|t′|| < 4|t′|, corresponding
roughly to Figures 5a and 2, respectively. As emphasized
in Section 4.1, for ∆pf < 4|t′| at δ ≈ 0, the system is
below the BR transition, as clear from Figure 9 (valid for
4|t′| < t0).

This weakly renormalized regime (and even more the
regime 4|t′| > t0) is associated with noncritical doping
dependence on t at fixed t0. The observed strong doping
dependence of t can then be associated only with the one
of t0, starting from t0 < |t′| Such behavior of t0 is not
acceptable in the TB approximation.

The only regime which remains is ∆̃ = ∆pf −4|t′|| ≈ 0,
corresponding in particular to IM to AS regimes of Fig-
ure 9. For the interpretation of the NQR data, this regime
puts the doped holes on the O-site, in agreement with
equation (8) and [39]. The resulting detailed fits of the
observed Fermi surfaces, together with the corresponding
values of ∆pf/t′ and t/t′ are shown in Figure 12. While
the fits in the underdoped regime are only qualitatively
significant because the localization and magnetic effects,

Fig. 12. (a–e) Experimentally measured Fermi surfaces for
LSCO [18] (dots) and the three band model fits (solid). (f)

fitting parameters in the regime of small ∆̃; circles: values of
∆pf/t′, dots: values of t/t′.

neglected in the MFSB approximation, are still important,
it is interesting to note that ∆pf is close to 4|t′| in optimal
to overdoped regime. This indicates that ∆pf saturates at
4|t′| for larger doping, the issue which, from the theoreti-
cal point of view, requires the use of equation (20) instead
of equation (21) in the MFSB theory.

The IM/AS regime of Figure 9 also fits well the behav-
ior of the hole spectrum, observed [18] below the Fermi
energy. At small doping, a group of states is concentrated
at 0.5 eV below the Fermi level. Upon doping, a part of
these states moves gradually towards the Fermi level. The
shape of the −0.5 eV resonance, as well as the one of
the resonance at the Fermi level, is blurred, indicating no
clear k dependence. Increasing the doping towards the op-
timum, the resonance at the Fermi level develops disper-
sion around X point. This evolution can be explained as-
sociating the –0.5 eV structure with the top of the oxygen
band (with the reflection ε → −ε, suitable for ARPES) as
shown in Figure 13.

With doping the narrow resonant band is formed by
transfer of the spectral weight, primarily from the oxygen
band. According to equation (12) the number of the occu-
pied states in this band is (1 − 〈nd〉)(1 + δ). On −∆pf , it
is well separated from the background at −∆pd ≈ −2 eV,
consistent with high-energy spectroscopies [38]. The value
of ∆pf can be determined from Figure 13: ∆pf ≈ 1.2 eV
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Fig. 13. Band-fits for the conducting band of LSCO of [18],
corresponding to the Fermi surfaces of Figure 12.

and the values of the rest of the parameters can be ob-
tained from the fits of Figure 13 as: t ≥ 0.6 eV for δ = 0.3,
|t′| ≈ 0.3 eV. This set of parameters is quite satisfactory
from the physical point of view.

Qualitatively similar picture is obtained from Ud = ∞
NCA [31] and Ud = 2 eV DMFT [10] calculations, which
also lead to the separation between the resonant band at
εf ≈ εp and the background (lower Hubbard band [10])
at εd. As in the MFSB approximation, t′ < 0 (t′ is re-
placed by −t′ in convention of [10]) reduces the optical
gap between the resonant band and the background.

5.2 Bi2212 and Y123

The analysis of the band-structure in LSCO is now fol-
lowed by the the analysis of the ARPES data obtained
for Bi2Sr2CaCuO8+δ (Bi2212) [25] and YBa2Cu3O7−δ

(Y123) [26], having two CuO2 layers in unit cell. In both
of these systems the FS is hole-like in the whole range of
doping. This reveals one of the long-standing questions in
the interpretation of ARPES data: the evolution of the FS
does not obey the Luttinger sum rule. Our model, for infi-
nite Ud, consisting only of one CuO2 layer cannot explain
straightforwardly this result. It can only be pointed out, as
the first, that the inter-layer couplings might account for
this effect, keeping the conducting band at constant dop-
ing, transporting the added holes to the other one, above
Fermi energy. Secondly, Luttinger’s sum rule is modified
at finite Ud, and this can thus point towards such effects.
Finally, the phase separation, e.g. of the 0± kind, or sim-
ilar, may produce the domains of coherence for the bands
filled up to the vH singularity.

The experimentally measured shapes of the conduct-
ing bands in Bi2212 and Y123, as well as the correspond-
ing Fermi surface, reveal oxygen-like character, i.e. hole-

Fig. 14. Band-fits for the conducting band of Bi2212 of [25]
with ∆pf = 3.69 eV, t = 0.36 eV, |t′| = 0.9 eV (a) and Y123
of [26] with ∆pf = 2.7 eV, t = 0.36 eV, |t′| = 0.9 eV(b).

Fig. 15. Band-fits for the conducting band of Bi2212 of [25]
with ∆pf = t = 0.2 eV, |t′| = 0.35 eV (a) and Y123 of [26]
with ∆pf = 0.06 eV, t = 0.06 eV, |t′| = 0.3 eV(b).

like Fermi surface implies the domination of |t′|. In the
slave-boson model used here, this can be achieved in ba-
sically two ways. As the first, saturation regime of band-
parameters can be used, assigning oxygen-like features to
the copper band and keeping ∆pf ≈ 4|t′|. These fits are
given in Figure 14.

In Bi2212, ∆pd/4|t′| ≈ 1, but in Y123 smaller value
was taken in order to fit more accurately experimental
data. This reflects the fact that the conducting band in
Bi2212 is flattened in the vicinity of the vH singular-
ity, which can be however alternatively explained with
AF fluctuations [2,36]. Unlike Bi2212, conducting band of
Y123 is strongly dispersive throughout the Brillouin zone
and essentially reflects oxygen-like symmetry. Neverthe-
less, slave-boson fits of Figure 14, where the value of ∆pf

was kept comparable to the value of 4|t′|, could not repro-
duce equally well all the experimental points. Therefore,
the alternative set of parameters were used to fit the same
data, shown in Figure 15 where 4|t′| ≥ ∆pf , t in Bi2212
and 4|t′| 
 ∆pf , t in Y123.

From the slave boson point of view, these values of ef-
fective parameters can be obtained in two ways. As the
first, the values of bare parameters could be such that the
lowest band is basically oxygen-like, i.e. |t′| 
 ∆pf . Then
the renormalization is weak ∆pf ≈ ∆pd, t ≈ t0, hence the
ratio of the parameters does not change with doping. This,
however does not agree with the large values of ∆pd deter-
mined from high-Tc spectroscopies [38]. As the second, the
copper band could cross the oxygen band in the IM/AS
region of Figure 9 when finite doping is added. As men-
tioned at the end of Section 4.6, t should then saturate
with doping at t0. Higher values of t could then be ex-
pected, unless 2|t′| 
 t0, which is unlikely. This, however,
depends on how fast the saturation of t is achieved upon
doping, the question which cannot be answered without
carrying out the MFSB theory, using equation (20) instead
of equation (21).



I. Mrkonjić and S. Barǐsić: Singular behavior of the Emery model with O-O hopping for high-Tc superconductors 83

6 Conclusion

In conclusion, the 3-site Emery model with Cu-O and O-
O hoppings, t0 and t′ respectively, the bare Cu-O CT gap
∆pd and large interaction Ud on the Cu-site is treated here
within the mean field slave boson approximation. The re-
sults are obtained analytically for arbitrary values of t′/t0
and ∆pd/t0. The additional assumption for the insulting
phase, t′ < 0, is adequate for the high-Tc cuprates.

Three aspects of the resulting singular behavior are
considered: the singular dispersion properties of the three
bands in the whole parameter-space of renormalized band
parameters, the phase transition singularities in relation
between renormalized and bare parameters and, with ref-
erence to the companion paper, the singularity of the d-
electron spectral density, associated with the formation of
the resonant band.

A number of new results is obtained this way: the
band-touching vs. band-anticrossing issue in the disper-
sion of three-bands is entirely elucidated by determining
analytically the range of parameters, wider than known
before, in which the touching occurs. Anticrossing, rather
than touching is found to be important for the high-Tc

cuprates.
The solution of the mean field slave boson equations in

the anticrossing regime for zero doping leads to important
new results: at large ∆pd the effective CT energy saturates
exponentially at the value 4|t′|, rendering stability to the
insulating state. If 2|t′| < t0, the range of stability of the
insulating state extends from large ∆pd to ∆pd of the order
of t0. The BR transition keeps its triple point nature lin-
early in t′, i.e. its full electron-hole symmetry is conserved.
The (logarithmically small) departure of the Fermi level
from the vH singularity, induced by t′ breaks explicitly
the electron-hole symmetry and removes the t′ = 0 triple
point nature of the BR point.

The electron-hole symmetry appears also at finite pos-
itive or negative doping. Close to the BR point the sym-
metry is nearly complete at t′ finite but small, 2|t′| < t0,
whereas for in the insulating phase it is only approximate.
In the latter case, the symmetry breaking,which exists al-
ready at t′ = 0, comes from the interaction, but it is mod-
ified by finite t′; in any case doped holes go to O-sites,
while doped electrons go to Cu-sites.

This picture is finally compared to the experiments on
high-Tc cuprates, ARPES in particular, associating the
observed single particle spectral density close to the Fermi
level with the resonant band. The idea of hole doping to
the O-sites is consistent with the NQR data for LSCO and
Y123. ARPES data in LSCO agree well with the picture
of the resonant band building its intensity by the trans-
fer of the oxygen states to the Fermi level, on satisfying
the Luttinger sum rule. The effective mass in this band
is given by the O-O hopping, large with respect to the
strongly renormalized Cu-O hopping. This, nearly cova-
lent behavior differs essentially from the heavy-fermion
limit, obtained in t′ = 0 case. The data on B2212 and
Y123 also require dominant t′, but the Luttinger sum rule
is not satisfied.

Several questions thus remain to be answered in the
future. The most fundamental seems to be related to
the breakdown of the Luttinger sum rule in Bi2212 and
Y123, if it is related to the moderate values of Ud on Cu-
site. Even for Ud large, the question of moderate doping
is worth further investigation. Above all, after achieved
the renormalization by a factor of ten of the bare single-
particle energy scales to the effective values (from 1eV to
0.1 eV), the further step (from 0.1eV to 0.01 eV), using
the effective interactions between auxiliary particles, leads
sight into the middle of the high-Tc problem.
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